VISCOUS PHOTONS AND LUMPY MUSIC

OUTLINE

- Sources & EM emissivity
- •Modelling the evolving system:
- 3D hydro
- 3D viscous hydro
- Fluctuating initial states
- •Are photons sensitive to all of the above?
- If so, can we quantify this?
- Dileptons?

INFO CARRIED BY THE RADIATION

$$dR = -\frac{g^{\mu\nu}}{2\omega} \frac{d^3k}{(2\pi)^3} \frac{1}{Z} \sum_{i} e^{-\beta K_i} \sum_{f} (2\pi)^4 \delta(p_i - p_f - k)$$
$$\times \langle j \mid J_{\mu} \mid i \rangle \langle i \mid J_{\nu} \mid j \rangle$$

Thermal ensemble average of the current-current correlator

Emission rates:

$$\omega \frac{d^3 R}{d^3 k} = -\frac{g^{\mu\nu}}{(2\pi)^3} \operatorname{Im}\Pi^R_{\mu\nu}(\omega, k) \frac{1}{e^{\beta\omega} - 1}$$
 (photons)

$$E_{+}E_{-}\frac{d^{6}R}{d^{3}p_{+}d^{3}p_{-}} = \frac{2e^{2}}{(2\pi)^{6}}\frac{1}{k^{4}}L^{\mu\nu}\operatorname{Im}\Pi_{\mu\nu}^{R}(\boldsymbol{\omega},k)\frac{1}{e^{\beta\omega}-1} \text{ (dileptons)}$$

McLerran, Toimela (85), Weldon (90), Gale, Kapusta (91)

Sources of photons:

Hard direct photons. pQCD with shadowing Non-thermal

Fragmentation photons. pQCD with shadowing Non-thermal

Thermal photons
Thermal

Jet-plasma photons Thermal

Jet in-medium bremsstrahlung Thermal

Thermal Photons from hot QCD: HTL program (Klimov (1981), Weldon (1982), Braaten & Pisarski (1990); Frenkel & Taylor (1990))

$$\operatorname{Im} \Pi^{\mu}_{R\mu} \sim \ln \left(\frac{\varpi T}{\left(m_{th} \left(\sim gT \right) \right)^2} \right) \begin{array}{c} \operatorname{Kapusta, Lichard,} \\ \operatorname{Seibert} (1991) \\ \operatorname{Baier, Nakkagawa,} \\ \operatorname{Niegawa, Redlich} (1991) \\ \operatorname{Niegawa, Redlich} (1991)$$

Kapusta, Lichard, Niegawa, Redlich (1992)

Going to two loops: Aurenche, Kobes, Gelis, Petitgirard (1996) Aurenche, Gelis, Kobes, Zaraket (1998)

Co-linear singularities:
$$\alpha_s^2 \left(\frac{T^2}{m_{th}^2}\right) \sim \alpha_s$$

2001: Results complete at $O(\alpha_s)$

Arnold, Moore, and Yaffe JHEP 12, 009 (2001); JHEP 11, 057 (2001) Incorporate LPM; Inclusive treatment of collinear enhancement, photon and gluon emission

Charles Gale

ELECTROMAGNETIC RADIATION FROM HADRONS

Chiral, Massive Yang-Mills:

O. Kaymakcalan, S. Rajeev, J. Schechter, PRD 30, 594 (1984)

$$\mathcal{L} = \frac{1}{8} F_{\pi}^{2} \operatorname{Tr} D_{\mu} U D^{\mu} U^{\dagger} + \frac{1}{8} F_{\pi}^{2} \operatorname{Tr} M \left(U + U^{\dagger} \right)$$
$$- \frac{1}{2} \operatorname{Tr} \left(F_{\mu\nu}^{L} F^{L\mu\nu} + F_{\mu\nu}^{R} F^{R\mu\nu} \right) + m_{0}^{2} \operatorname{Tr} \left(A_{\mu}^{L} A^{L\mu} + A_{\mu}^{R} A^{R\mu} \right)$$

+ non-minimal terms

Parameters and form factors are constrained by hadronic phenomenology:

- •Masses & strong decay widths
- •Electromagnetic decay widths
- •Other hadronic observables:

• e.g.
$$a_1 \to \pi \rho$$
 D/S (See also, Lichard and Vojik, arXiv:1006.2919)

EM emissivities computed: Turbide, Rapp, Gale, PRC (2004); Turbide, McGill PhD (2006)

PHOTON SPECTRA: SOME RESULTS

- •Reactions involving strangeness sub-dominant
- Large contribution from the hadronic channels with a $\pi\rho$ initial state
- OUsed to interpret WA98 data

APPLYING THIS TO THE SOFT SECTOR @ RHIC

- At low p_T, spectrum dominated by thermal components (HG, QGP)
- At high p_T, spectrum dominated by pQCD
- Window for jet-QPG contributions at midpT

Turbide, Gale, Frodermann, Heinz, PRC (2008); Higher p_T : G. Qin et al., PRC (2009)

7

BEYOND ONE-BODY DATA: FLOW AND CORRELATIONS

$$\frac{dN}{p_T dp_T d\phi} = \frac{dN}{2\pi p_T dp_T} \left[1 + \sum_{n} 2v_n \cos(n\phi) \right]$$

- Soft photons will go with the flow
- Jet-plasma photons: a negative v₂
- Details will matter: flow, T(t)...

Turbide, Gale, Fries PRL (2006) Low p_T : Chatterjee *et al.*, PRL (2006) All p_T : Turbide *et al.*, PRC (2008)

3D RELATIVISTIC HYDRODYNAMICS:

- Ideal: Schenke, Jeon, and Gale, PRC (2010)
- FIC and Viscous: Schenke, Jeon, Gale, PRL (2011)

THE EFFECTS OF SHEAR VISCOSITY ON BULK DYNAMICS

$$T_{\text{ideal}}^{\mu\nu} = (\varepsilon + P)u^{\mu}u^{\nu} - Pg^{\mu\nu}$$

$$T^{\mu\nu} = T^{\mu\nu}_{ideal} + \pi^{\mu\nu}$$

Israël & Stewart, Ann. Phys. (1979), Baier et al., JHEP (2008), Luzum and Romatschke, PRC (2008)

$$\partial_{\mu} T^{\mu\nu} = 0, \quad \Delta^{\mu}_{\alpha} \Delta^{\nu}_{\beta} u^{\sigma} \, \partial_{\sigma} \pi^{\alpha\beta} = -\frac{1}{\tau_{\pi}} (\pi^{\mu\nu} - S^{\mu\nu}) - \frac{4}{3} \pi^{\mu\nu} (\partial_{\alpha} u^{\alpha})$$
$$\partial_{\mu} (su^{\mu}) \propto \eta \qquad \text{(c.f. Talk by B. Schenke)}$$

- Viscous evolution starts with a lower T
- T drop is slower than ideal case

Charles Gale

10

BROOKHAVEN
NATIONAL LABORATORY

THE EFFECTS OF SHEAR VISCOSITY ON BULK DYNAMICS

$$T_{\text{ideal}}^{\mu\nu} = (\varepsilon + P)u^{\mu}u^{\nu} - Pg^{\mu\nu}$$

$$T^{\mu\nu} = T^{\mu\nu}_{ideal} + \pi^{\mu\nu}$$

Israël & Stewart, Ann. Phys. (1979), Baier et al., JHEP (2008), Luzum and Romatschke, PRC (2008)

$$\partial_{\mu} T^{\mu\nu} = 0, \quad \Delta^{\mu}_{\alpha} \Delta^{\nu}_{\beta} u^{\sigma} \, \partial_{\sigma} \pi^{\alpha\beta} = -\frac{1}{\tau_{\pi}} (\pi^{\mu\nu} - S^{\mu\nu}) - \frac{4}{3} \pi^{\mu\nu} (\partial_{\alpha} u^{\alpha})$$
$$\partial_{\mu} (su^{\mu}) \propto \eta \qquad \text{(c.f. Talk by B. Schenke)}$$

MOVING INTO THE "CHARACTERIZATION" PHASE...

Tuesday, 6 December, 11

THE EFFECTS OF SHEAR VISCOSITY ON THE PHOTON DISTRIBUTION

In-medium hadrons:

$$f_0(u^{\mu}p_{\mu}) = \frac{1}{(2\pi)^3} \frac{1}{\exp[(u^{\mu}p_{\mu} - \mu)/T] \pm 1}$$

$$f \to f_0 + \delta f$$
, $\delta f = f_0 (1 \pm (2\pi)^3 f_0) p^{\alpha} p^{\beta} \pi_{\alpha\beta} \frac{1}{2(\varepsilon + P)T^2}$

$$q_0 \frac{d^3 R}{d^3 q} = \int \frac{d^3 p_1}{2(2\pi)^3 E_1} \frac{d^3 p_2}{2(2\pi)^3 E_2} \frac{d^3 p_3}{2(2\pi)^3 E_3} (2\pi)^4 |M|^2 \delta^4(...) \frac{f(E_1) f(E_2) [1 \pm f(E_3)]}{2(2\pi)^3}$$

One considers all the reaction and radiative decay channels of external state combinations of:

$$\{\pi, K, \rho, K^*, a_1\}$$
 With hadronic form factors

+ QGP Photons

THE EFFECTS OF SHEAR VISCOSITY ON THE PHOTON DISTRIBUTION

In-medium hadrons:

$$f_0(u^{\mu}p_{\mu}) = \frac{1}{(2\pi)^3} \frac{1}{\exp[(u^{\mu}p_{\mu} - \mu)/T] \pm 1}$$

Ansatz: Dusling, Moore, Teaney PRC (2010)

$$f \to f_0 + \delta f$$
, $\delta f = f_0 (1 \pm (2\pi)^3 f_0^2) p^{\alpha} p^{\beta} \pi_{\alpha\beta} \frac{1}{2(\varepsilon + P)T^2}$

$$f \to f_0 + \delta f, \quad \delta f = f_0 (1 \pm (2\pi)^3 f_0^4) p^{\alpha} p^{\beta} \pi_{\alpha\beta} \frac{1}{2(\varepsilon + P)T^2}$$

$$q_0 \frac{d^3 R}{d^3 q} = \int \frac{d^3 p_1}{2(2\pi)^3 E_1} \frac{d^3 p_2}{2(2\pi)^3 E_2} \frac{d^3 p_3}{2(2\pi)^3 E_3} (2\pi)^4 |M|^2 \delta^4 (...) \frac{f(E_1) f(E_2) [1 \pm f(E_3)]}{2(2\pi)^3}$$

One considers all the reaction and radiative decay channels of external state combinations of:

$$\{\pi,K,\rho,K^*,a_1\}$$

 $\{\pi, K, \rho, K^*, a_1\}$ With hadronic form factors

+ QGP Photons

12

THE QGP PHOTONS HERE:

$$E\frac{d^{3}R}{d^{3}p} = \sum_{i} \frac{N}{(2\pi)^{7}} \frac{1}{16E} \int ds \, dt \, |M|^{2} \int dE_{1} \, dE_{2} f_{1}(E_{1}) f_{2}(E_{2}) [1 \pm f_{3}(E_{1} + E_{2} - E)]$$

$$\theta(E_{1} + E_{2} - E)$$

$$\times \frac{\theta(E_1 + E_2 - E)}{\sqrt{(aE_1^2 + bE_1 + c)}}$$

- ODifference between C+a and leading order rates is ≈2, past 1 GeV
- \circ N_f = 3, T = 350 MeV (top), T = 250 MeV (bottom)

BROOKHAVEN NATIONAL LABORATORY

Dion et al., PRC (2011)

13

THE EFFECTS OF SHEAR VISCOSITY ON THE PHOTON DISTRIBUTION

THE NET PHOTON YIELD

- •Viscous corrections make the spectrum harder, by a modest amount (≈100% at p_T = 4 GeV).
- Extracting the viscosity from the photon spectra will be challenging
- •More work is needed to properly include all photon sources in a consistent way

THE NET PHOTON V2

THE NET PHOTON V2

- •The net elliptic flow is a weighted average. A larger yield (QGP) will get compensated by a smaller v₂. Same story for the HG
- The turnover at $p_T \approx 2 \text{ GeV}$ is QGP-driven
- The small structure at low p_T is hadronic: it is a cross-over between two hadronic channels
- ⁴ The net effect of viscous corrections makes the photon elliptic flow smaller, as it does for hadrons

Non-equilibrium effects

Non-equilibrium effects: cont'd

- Pick a photon momentum ($\pi/4$ in x-y plane, $\eta_s \approx 0$), Lorentz-transform back to fluid rest frame.
- •Assume a massless fermion for the high T part. Processes are $2 \rightarrow 2$: Obtain the correction to the distribution function.
- Some numbers:

$\frac{\delta f}{f_0}$	Early times		Late times	
$p_T = 2 \text{ GeV}$	≥1	≈ 20%	≥1	≈ 5%
	≥2	~ 0	≥2	=0
$p_T = 3 \text{ GeV}$	≥1	≈ 80%	≥1	≈ 25%
	≥2	≈ 30%	≥2	≈ 5%

• *Initially*, corrections vanish.

Non-equilibrium effects: cont'd

- Pick a photon momentum ($\pi/4$ in x-y plane, $\eta_s \approx 0$), Lorentz-transform back to fluid rest frame.
- •Assume a massless fermion for the high T part. Processes are $2 \rightarrow 2$: Obtain the correction to the distribution function.
- Some numbers:

$\frac{\delta f}{f_0}$	Early times		Late times	
$p_T = 2 \text{ GeV}$	≥1 ≥2	≈ 20% ~ 0	≥1 ≥2	$\approx 5\%$ $= 0$
$p_T = 3 \text{ GeV}$	≥1 ≥2	≈ 80% ≈ 30%		≈ 25% ≈ 5%

• *Initially*, corrections vanish.

Photons probe the dynamics of the entire time-evolution

Non-equilibrium effects: cont'd

- Pick a photon momentum ($\pi/4$ in x-y plane, $\eta_s \approx 0$), Lorentz-transform back to fluid rest frame.
- •Assume a massless fermion for the high T part. Processes are $2 \rightarrow 2$: Obtain the correction to the distribution function.
- Some numbers:

$\frac{\delta f}{f_0}$	Early times		Late times	
$p_T = 2 \text{ GeV}$	≥1	≈ 20%	≥1	≈ 5%
	≥2	~ 0	≥2	=0
$p_T = 3 \text{ GeV}$	≥1	≈ 80%	≥1	≈ 25%
	≥2	≈ 30%	≥2	≈ 5%

• *Initially*, corrections vanish.

Photons probe the dynamicalition the entire time-evolution

ANATOMY OF NON-EQUILIBRIUM EFFECTS

- Larger viscous corrections at high temperatures/early times: elements of the shear tensor are larger
- Higher momenta command larger viscous corrections: broader distribution for the relative correction factor
- •Small (negligible number of occurrences where the occupation function becomes negative

Only electromagnetic radiation imposes such a stringent constraint on the dynamical models: from early to late times

INITIAL STATE FLUCTUATIONS: A PARADIGM SHIFT IN HEAVY ION ANALYSES

Lumpy

Schenke, Jeon, Gale, PRL (2011)

21

INITIAL STATE FLUCTUATIONS: MC GLAUBER INITIALIZATION

- Sample the nucleon locations from the nuclear density profile (with or without the shell effect deformations)
- Identify the colliding partners $(d \le \sqrt{\sigma_{NN} / \pi})$
- Having identified the wounded nucleons, ascribe an energy distribution at each site, with a Gaussian width σ_0 .

THE EFFECT ON THE THERMAL PHOTON SPECTRUM

- •FIC produces higher initial T (hot spots), and higher initial gradients
- •FIC conditions are demanded by hadronic data (v_{odd})
- These lead to a harder spectrum, as for hadrons

MORE SPECTRUM STUDIES

- Combined with viscous corrections, FIC yield an enhancement by ≈ 5 @ 4 GeV, and ≈ 2 @ 2 GeV
- HG enhancement is as big as that from the QGP, but net signal is down by an order of magnitude

MORE SPECTRUM STUDIES

- Combined with viscous corrections, FIC yield an enhancement by ≈ 5 @ 4 GeV, and ≈ 2 @ 2 GeV
- HG enhancement is as big as that from the QGP, but net signal is down by an order of magnitude

FICs vs. AICs

- Velocities are larger with FICs, by $\approx 60\%$
- Early times velocities are small, but still different in the two cases
- This suggest a combination of "hot spots" and of blueshift, for generating the harder spectra with FICs.

QUANTIFYING THE EFFECT ON THE THERMAL PHOTON SPECTRUM

P _T (GeV)	Viscosity	FIC	Viscosity + FIC
1	18%	18%	41%
2	30%	45%	82%
3	30%	77%	126%

FICS AND THERMAL PHOTON V2

- The combination of FICs and of viscous effects enhance v₂ in this centrality class (0-20%), as for hadrons
- For hadrons measured in events belonging to large centrality, FICs will *decrease* v₂
- •HG elliptic flow is much larger than QGP elliptic flow, but remember net v₂ is a weighted average. Shapes are also different, as before

FICS AND THERMAL PHOTON V2

- The combination of FICs and of viscous effects enhance v₂ in this centrality class (0-20%), as for hadrons
- For hadrons measured in events belonging to large centrality, FICs will *decrease* v₂
- •HG elliptic flow is much larger than QGP elliptic flow, but remember net v₂ is a weighted average. Shapes are also different, as before
- Net v₂ is comparable in size to that with ideal medium. Bending down is QGP-driven

PHOTON V₂ DATA?

- •New data is higher than calculation, even with e-b-e initial state fluctuations, and ideal hydro
- •Size comparable with HG v₂, but shape is wrong

SOME FACTS AND SOME THINGS TO TRY

- •FICs are here to stay
- Change hydro initialization and parameters. This requires consistency with the hadronic data
- •Making the QGP signal larger will *decrease* the v₂. Including the T=0 photons, will decrease v₂
- Non-zero initial shear tensor

• The HG sector: A consistent treatment of chemical potentials is needed. However,

WHAT ABOUT DILEPTONS? THERMAL DILEPTON ELLIPTIC FLOW

$$v_2(M, p_T, b) = \frac{\int d\phi \cos(2\phi) \frac{d^4N}{dM^2 dy \, p_T dp_T d\phi}}{\int d\phi \frac{d^4N}{dM^2 dy \, p_T dp_T d\phi}}$$

Chatterjee, Srivastava, Heinz, Gale, PRC (2007)

•Additional degree of freedom: M and p_T may be varied independently

THERMAL DILEPTON SOURCES

 \circ QGP: Born term $q\bar{q} \to \ell^+\ell^-$

•HG contribution: calculate the in-medium vector spectral density

$$\Pi_{ab}(E,p) = -4\pi \int \frac{d^3k}{(2\pi)^3} n_b(\omega) \frac{\sqrt{s}}{\omega} f_{ab}^{\text{c.m.}}(s)$$

 Vector mesons scatter off hadrons.
 Spectral density is distorted

Eletsky and Ioffe, PRL (1997) Eletsky and Kapusta, PRC (1999)

Resonance	Mass	Width	Branching r	atio
	(GeV)	(GeV)		
N(2190)	2.127	0.547	0.29	
N(2100)	1.885	0.113	0.27	ϕ :Vujanovic and Gale,
N(2090)	1.928	0.414	0.49	•
N(2080)	1.804	0.447	0.26	PRC (2009)
N(2000)	1.903	0.494	0.60	
N(1900)	1.879	0.498	0.44	
N(1720)	1.717	0.383	0.87	
N(1700)	1.737	0.249	0.13	
N(1520)	1.520	0.115	0.0040	
$\Delta(2000)$	1.752	0.251	0.22	
$\Delta(1940)$	2.057	0.460	0.35	
$\Delta(1905)$	1.881	0.327	0.86	
$\Delta(1900)$	1.920	0.263	0.38	31
$\Delta(1700)$	1.762	0.599	0.08	◆ 翻 ◆
$\Delta(1232)$	1.232	0.118	0.0055	Charles Gale Charles Gale

THERMAL DILEPTON SOURCES

 ${}^{\circ}$ QGP: Born term $qq \to \ell^{+}\ell^{-}$

• HG contribution: calculate the in-medium vector

spectral density

$$\Pi_{ab}(E,p) = -4\pi \int \frac{d^3k}{(2\pi)^3} n_b(\omega) \frac{\sqrt{s}}{\omega} f_{ab}^{\text{c.m.}}(s)$$

Resonance	Mass	Width	Branching r	atio
	(GeV)	(GeV)		
N(2190)	2.127	0.547	0.29	
N(2100)	1.885	0.113	0.27	Mujanavia and Cala
N(2090)	1.928	0.414	0.49	$\boldsymbol{\psi}$:Vujanovic and Gale
N(2080)	1.804	0.447	0.26	PRC (2009)
N(2000)	1.903	0.494	0.60	
N(1900)	1.879	0.498	0.44	
N(1720)	1.717	0.383	0.87	
N(1700)	1.737	0.249	0.13	
N(1520)	1.520	0.115	0.0040	
$\Delta(2000)$	1.752	0.251	0.22	
$\Delta(1940)$	2.057	0.460	0.35	
$\Delta(1905)$	1.881	0.327	0.86	
$\Delta(1900)$	1.920	0.263	0.38	31
$\Delta(1700)$	1.762	0.599	0.08	◆職◆
$\Delta(1232)$	1.232	0.118	0.0055	Charles Gale

THERMAL DILEPTON SPECTRA: SOME RESULTS

- Transition from HGdominated to QGPdominated
- \circ DD not included here
- Effects of viscous
 corrections are modest
 c.f. Dusling & Lin, NPA (2008)
- Same hydro as for photon calculations

G. Vujanovic, 2011

32

THERMAL DILEPTON V2 WITH VISCOUS EFFECTS

- •Low M: HG-dominated
- High-M: QGP dominated

Chatterjee, Srivastava, Heinz, Gale PRC (2007)

- No open charm here
- •v₂ as a function of M will contain some info on the transition regime
- Viscous effects are modest
- •FICs? Coming soon...

33

- ■Maxime Dion
- Jean-François Paquet
- Gojko Vujanovic
- ■Björn Schenke
- Clint Young
- Sangyong Jeon

 Photon v₂ is very sensitive to the EOS, and to various hydro parameters such as viscosity, and initial state fluctuations

- ■Maxime Dion
- Jean-François Paquet
- Gojko Vujanovic
- ■Björn Schenke
- Clint Young
- Sangyong Jeon

- Photon v₂ is very sensitive to the EOS, and to various hydro parameters such as viscosity, and initial state fluctuations
- Dilepton v₂ is needed to complete the EM emission systematics

- ■Maxime Dion
- Jean-François Paquet
- Gojko Vujanovic
- ■Björn Schenke
- Clint Young
- Sangyong Jeon

- Photon v₂ is very sensitive to the EOS, and to various hydro parameters such as viscosity, and initial state fluctuations
- Dilepton v₂ is needed to complete the EM emission systematics
- Photon v₂ data needs interpretation with consistent dynamical approach, but suggestive of new physics

- ■Maxime Dion
- Jean-François Paquet
- Gojko Vujanovic
- ■Björn Schenke
- Clint Young
- Sangyong Jeon

- Photon v₂ is very sensitive to the EOS, and to various hydro parameters such as viscosity, and initial state fluctuations
- Dilepton v₂ is needed to complete the EM emission systematics
- Photon v₂ data needs interpretation with consistent dynamical approach, but suggestive of new physics
- FICs and viscosity(ies) make a difference in photon characterization

- ■Maxime Dion
- Jean-François Paquet
- Gojko Vujanovic
- ■Björn Schenke
- Clint Young
- Sangyong Jeon

- Photon v₂ is very sensitive to the EOS, and to various hydro parameters such as viscosity, and initial state fluctuations
- Dilepton v₂ is needed to complete the EM emission systematics
- Photon v₂ data needs interpretation with consistent dynamical approach, but suggestive of new physics
- FICs and viscosity(ies) make a difference in photon characterization
- · Hydro has to be consistent with hadronic data

- ■Maxime Dion
- Jean-François Paquet
- Gojko Vujanovic
- ■Björn Schenke
- Clint Young
- Sangyong Jeon

